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SUMMARY

Bifurcations in capillarity-driven two-phase fluid systems, due to different mobilities in phase-field models
for such systems, are studied by using a lattice Boltzmann method (LBM). Specifically, two-dimensional
(2D) and three-dimensional (3D) droplets on a flat wall with given wettability variations are investigated.
It is found that the mobility controls the rate of diffusive relaxation of the phase field from non-equilibrium
toward equilibrium, and similar to previous findings on mechanically driven two-phase systems, the
mobility is closely related to the contact line velocity. For the cases investigated, different mobilities
across a critical value result in fundamentally different system evolution routes and final stable equilibrium
states. These results may provide some implications for phase-field study of droplet manipulations by
surface wettability adjustments in microfluidics. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of immiscible two-phase fluid systems has its significance in both theoretical and
practical aspects but is still a challenging problem. There is much enriched physics such as phase
separation and mixing in these systems, and they are commonly encountered in such industries
as cosmetic, food and pharmacy. Modeling of these systems is usually difficult due to complex
interfaces between different fluids, as well as those between the fluids and solid walls [1]. In
the literature, the phase-field models (also known as diffuse interface models) have been shown
to hold good prospects in studying the dynamics of such systems [2, 3]. In phase-field models
for multicomponent fluid flows, the underlying governing equations are usually composed of
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the Navier–Stokes equations, which are conservation laws for the mass and momentum, and
the Cahn–Hilliard equation (CHE), which describes the evolution of the phase-field function.
If the mobility is assumed to be constant, the CHE may be written as �t�+(u·∇)�=M∇2�,
with � being the phase-field function (or concentration), u the fluid velocity, � the chemical
potential and M the mobility. This convection–diffusion equation is very similar to the pure
advection equation (without the diffusion term) in some other methods for multiphase flows, such
as the level set and volume of fluid (VOF) methods. In these methods, similar diffusion should
also exist due to the smoothing procedure necessary for calculating the interfacial tension force.
Diffusion might be completely eliminated only in pure interface tracking methods.As compared
with level set and VOF methods, the explicit inclusion of the diffusion term in the CHE, with its
magnitude proportional to M , provides a physical relaxation mechanism for the concentration. Such
a mechanism leads to the flexibility of phase-field models to accommodate various singularities,
for instance, the pressure jump across a curved interface and the stress singularity in contact line
dynamics [3, 4].

Previously some researchers have given a few analyses on the mobility, both as a computational
parameter related to asymptotics of numerical methods and as a physical one involving diffusional
properties in mixing, coalescence and contact line problems. Jacqmin [3] found, by some theoretical
analysis and numerical investigations, that the mobility should be bounded between O(�2) and
O(�) (� being the dimensionless interface thickness) in order to carry out an appropriate diffuse
interface simulation that approximates the sharp interface solutions. Jacqmin [4] provided a detailed
analysis on the inner regions surrounding a three-phase contact line (point) and found a length scale
(here denoted as lCL) for such small regions determined by the dynamic viscosity and the mobility,
lCL∝√

�M (� being the dynamic viscosity). Chen et al. [5] similarly identified a length scale in the
moving contact line problems for the dissipative relaxation of the concentration, which is related to
the interfacial thickness, the concentration diffusivity and the boundary velocity. Kendon et al. [6]
addressed the significance of using an appropriate mobility, similar to the conclusion reached
in [3], in the lattice Boltzmann method (LBM) framework; they also addressed the difficulty in
using a concentration-dependent mobility in LBM. Briant and Yeomans [7] studied the contact
line dynamics using LBM and derived a length scale proportional to M1/4 for the region in which
the diffusive effects become significant and argued that their results match the classical work
using a slip length model. Inamuro et al. [8] found, by using the LBM, that in bubble rising
problems, the mobility affects the coalescence of two bubbles. Vladimirova and Mauri [9] and
most recently Lamorgese and Mauri [10] showed some diffuse interface simulations of droplet
coalescences when the system is suddenly changed from two- to one-phase region; results from
both investigations illustrate that different mobilities (Peclet numbers in the original articles) may
lead to qualitatively different mixing outcome. Khatavkar et al. [11] also discussed the scaling
issues in diffuse interface models and pointed out that it is necessary to know how to adapt the
mobility in accordance with the artificial enlargement of the interface thickness so as to capture
the bulk flow phenomena. Zheng et al. [12] discovered that, similar to [8], large mobility expedites
the merging processes of two close bubbles.

It has become obvious that the mobility is an important parameter in the study of multiple phase
or fluid flows by the phase-field modeling. However, the effect of mobility in various flows may be
diverse and it certainly deserves comprehensive investigations, either as a physical property or as a
numerical parameter. The purpose of this paper is to study the interesting bifurcation phenomena
due to different mobilities in systems with droplets driven by variations in surface wettability. Here
the mobility is viewed as a physical parameter controlling diffusion in CHE. It is noted that some
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cases shown below might occur only at submicrometer or even smaller scales, which is necessary
to allow the diffusion to become important enough to affect the flow significantly.

This paper is organized as follows. Section 2 introduces the free-energy-based diffuse interface
model for two-phase fluids. Section 3 describes the lattice Boltzmann formulation and the wetting
boundary conditions. In Section 4, simulation results and some discussions are presented for 2D
and 3D droplets on a lyophobic wall and 3D droplets on chemically heterogeneous surfaces to
illustrate the bifurcations occurring in these systems under different mobilities. Section 5 concludes
this paper.

2. DIFFUSE INTERFACE MODEL FOR TWO-PHASE FLUID SYSTEMS

When a square gradient interfacial energy density is assumed, the free energy functional may be
expressed as

F(�,∇�)=
∫
V
(�(�)+(�/2)|∇�|2)dV (1)

where � is the concentration varying smoothly across the interfacial region, �(�) is the bulk free
energy density, (�/2)|∇�|2 is the interfacial energy density with � being a constant and V denotes
the fluid volume. Among various forms of bulk free energy density [12–14], the simplest one is
the double well form, which is adopted in the present study and expressed as

�(�)=a(�+1)2(�−1)2 (2)

where a is a constant (note: � and a are related to the interfacial tension and interface thickness;
detailed relations to be given later). Across a flat interface, � changes from 1 to −1. The chemical
potential � is calculated by taking the variation of the free energy functional with respect to the
concentration

�=�F/��=�′(�)−�∇2�=4a�(�2−1)−�∇2� (3)

For a flat interface, one can obtain the analytical solution of the interface profile

�(z)= tanh(z/(W/2)) (4)

where z is the coordinate perpendicular to the interface and W is the interface thickness given by

W =√
2�/a (5)

Note that the definition of interface thickness may be different in different papers. Here from
Equation (4), W corresponds to the distance across which � varies from −0.76159 (z=−W/2)
to 0.76159 (z=W/2).

The surface tension 	 can be calculated as

	=�
∫ ∞

−∞
(d�/dz)2 dz=(4/3)

√
2�a (6)

Using Equations (5) and (6), one can express the coefficients a and � in terms of 	 andW as follows:

a=(3	)/(4W ) (7a)

�=3	W/8 (7b)
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Similar to [4], for simplicity yet without losing the core physics, we consider only systems with
a constant mobility and with no difference in density or viscosity. For such systems, the full
governing equations can be expressed as

∇ ·u=0 (8a)

�tu+(u·∇)u=−∇Sp+
∇2u−�∇� (8b)

�t�+(u·∇)�=M∇2� (8c)

where 
 is the kinematic viscosity and Sp is used to enforce the incompressibility [4]. After
non-dimensionalization with a characteristic density �c, a characteristic length Lc, a characteristic
velocity Uc and a characteristic time Lc/Uc, they become

∇ ·u=0 (9a)

�tu+(u·∇)u=−∇Sp+Re−1∇2u−(ReCa)−1�∇{Ch−1[3�(�2−1)]−Ch(3∇2�/8)} (9b)

�t�+(u·∇)�=Pe−1∇2{Ch−1[3�(�2−1)]−Ch(3∇2�/8)} (9c)

where Re is the Reynolds number, Re=UcLc/
, which reflects the ratio of the inertial force to
the viscous force, Ca is the capillary number, Ca=�c
Uc/	, which measures the ratio of the
viscous force to the surface tension force. In addition, there appear two parameters that are defined
uniquely in diffuse interface models. One is the Cahn number, Ch=W/Lc, which is the ratio of the
interface thickness to the characteristic length, and the other is the Peclet number, Pe=UcL2

c/M	,
which reflects the ratio of the convection intensity to the diffusion one. It is noted that in [11], the
Peclet number is defined differently as (in terms of the present symbols) UcLcW/M	, which is
related to the present one as UcLcW/M	=PeCh. If that definition is adopted, then the right-hand
side of Equation (9c) will become Pe−1∇2[3�(�2−1)−Ch2(3∇2�/8)]. We have to indicate that
sometimes it is difficult to identify the characteristic quantities before the simulation. For instance,
for a chemically driven droplet it is almost impossible to know the characteristic (e.g. the maximum)
velocity beforehand because the actual value is determined not only by the droplet size and the
surface tension but also by the initial configuration and the wetting property (more generally,
the gradient of the chemical potential), and even the mobility as shown later. Hence, we use the
mobility instead of the Peclet number to differentiate the cases. Nevertheless, the corresponding
dimensionless numbers can be calculated from the simulation results, and the Peclet numbers of
most cases will be so small that the diffusion is important to determine the flow characteristics.

There have been many studies on the direct numerical solutions of the above set of equations.
In this paper, we focus on another type of method—the LBM—which approximates them in the
long-wavelength and long-time limit yet proves to be fairly efficient and easy to implement [15].
LBM is different from the direct solving methods at least in the following aspects: (i) LBM uses
a set of distribution functions, the moments of which include more than the velocity, pressure
and the concentration and simple collision-streaming loops are performed on each time step; (ii)
the non-slip boundary condition is implemented indirectly through the bounce-back condition for
the distribution functions and (iii) the wetting boundary condition is implemented through the
equilibrium distribution functions and, in the present model, the collision step. The differences
and comparisons between the two types of methods may deserve further research work, but they
are out of the scope of this work. Furthermore, we restrict our focus within the free-energy-based
LBM, which is closer to the original concept of diffuse interface models.
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3. LATTICE BOLTZMANN MODEL FOR IMMISCIBLE TWO-PHASE FLUIDS

3.1. The LBM formulation

In this subsection, we briefly outline the free-energy-based LBM for immiscible two-phase fluids.
The free energy is almost identical to that defined in Equation (1) except that an additional term
is inserted into the volume integration to enforce incompressibility [1, 6] and the surface energy
contribution is included to model the wetting on solid walls [7, 16]:

F(�,∇�)=
∫
V
(�c2s ln�+�(�)+(�/2)|∇�|2)dV +

∫
S
�(�S)dS (10)

More details about the surface energy and wetting boundary conditions are given in the next
subsection.

The lattice Boltzmann equations are given as

fi (x+ei�t , t+�t )− fi (x, t)=−( fi (x, t)− f eqi (x, t))/ f +�twiei�(����)/c2s (11a)

gi (x+ei�t , t+�t )−gi (x, t)=−(gi (x, t)−geqi (x, t))/g (11b)

where fi are the distribution functions for the hydrodynamics fields (�,u�, Sp), gi are the distribu-
tion functions for the concentration field (�), cs is the ‘sound speed’, �t is the time step and wi are
the weights associated with the discrete velocities ei . Note that summation over repeated subscripts
for spatial coordinates (i.e. the Greek letters) is assumed throughout the paper (not applicable for
other subscripts). For the D2Q9 [7] and D3Q15 [6] models used here, the sound speed is related
to the unit lattice speed as

c=√
3cs (12)

The details about ei and wi can be easily found in the literature [6, 7] and will be omitted here for
conciseness. In Equations (11a) and (11b),  f and g are the relaxation parameters related to the
fluid viscosity and the mobility, respectively; the equilibrium distribution functions, f eqi and geqi ,
are calculated from the local density, velocity, concentration and the chemical potential as follows:

f eqi =wi {Ai +�[ei�u�/c
2
s +u�u�(ei�ei�−c2s ���)/(2c

4
s )]} (13a)

geqi =wi (Bi +�ei�u�/c
2
s ) (13b)

with the coefficients Ai and Bi given by

Ai =
⎧⎨
⎩

(�c2s +��)/c2s = A (i>0)

w−1
0 [�−(1−w0)A] (i=0)

(14a)

Bi =
⎧⎨
⎩
M̃�/c2s = B (i>0)

w−1
0 [�−(1−w0)B] (i=0)

(14b)
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Here M̃ is a parameter related to the mobility M as M=(g−1/2)M̃�t and in the following
simulations, g =1, M=(1/2)M̃�t . The distribution functions satisfy the following relations:

∑
i
fi =∑

i
f eqi =� (15a)

∑
i
gi =∑

i
geqi =� (15b)

∑
i
ei� fi =∑

i
ei� f

eq
i =�u� (16a)

∑
i
ei�gi =∑

i
ei�g

eq
i =�u� (16b)

∑
i
ei�ei� f eqi =�u�u�+(�c2s +��)��� (17a)

∑
i
ei�ei�g

eq
i = M̃���� (17b)

When the Chapman–Enskog multiscale analysis [7] is applied to this model, the set of governing
equations can be obtained in the long-time and long-wavelength limit. It is noted that the above
LBM is close to that in [6]. However, the way to deal with the surface tension force has been
modified, which results in much smaller spurious currents and better isotropy of the velocity field
in the interfacial region. The main idea is to rewrite the momentum equation as

�tu+∇ ·(uu+(Sp+��)
↔
I )=
∇2u+�∇� (18)

where
↔
I denotes the unit tensor of the second order. As seen in Equations (11a), (13a) and (14a), the

surface tension force is separated into two parts: one put into the equilibrium distribution functions
and the other applied as a body force in the collision step. Such rearrangement and implementation
originate from [12]. In dealing with the surface tension force by this way, the highest order of
derivatives in the forcing term changes from the third ∇(∇2), as seen in ∇�=∇[�′(�)−�∇2�],
to the second ∇2, as seen in �=�′(�)−�∇2�.

With the given appropriate initial conditions, the computation follows the standard LBM cycle:

(1) Collision:

fi (x, t+)=[1−(1/ f )] fi (x, t)+(1/ f ) f
eq
i (x, t)+�twiei�(����)/c2s

gi (x, t+)=[1−(1/g)]gi (x, t)+(1/g)g
eq
i (x, t)

(2) Applying boundary conditions for fi , gi .
(3) Streaming:

fi (x+ei�t , t+�t )= fi (x, t+)

gi (x+ei�t , t+�t )=gi (x, t+)
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(4) Calculating the macroscopic variables: �, u�, �, ���, � and specifying ��� on the solid
boundaries.

(5) Calculating the equilibrium distribution functions: f eqi and geqi .

3.2. Boundary conditions

In LBM, the bounce-back scheme is usually applied on a solid wall for the distribution functions.
Figure 1 gives the illustration for the D2Q9 model on a lower wall (note that there are different
versions of bounce back and the one illustrated here is the by-node scheme). Take the distribution
functions fi as an example (the same conditions are applied for gi ). After the streaming step, f6,
f7 and f8 are bounced back in their respective opposition directions. In the next time step, their
values are given to f2, f3 and f4, respectively.

Nowwe give some further discussions on the surface energy and the wetting boundary conditions.
The surface energy �(�S) in Equation (10) is assumed to be a simple linear function of the
concentration on the wall [7, 16]

�(�S)=−��S (19)

where � is the parameter related to the surface wetting property characterized by the static contact
angle (CA) �. By minimizing the total free-energy functional, one can obtain a natural boundary
condition for the concentration as

�n·(∇�)S =−� (20)

where n is the local normal direction of the wall pointing into the fluid. The static CA � (measured
in the fluid with �=1) can be shown to satisfy the following equation:

cos�=(1/2)[(
√
1+�̃)3−(

√
1−�̃)3] (21)

with the dimensionless parameter �̃ given by

�̃=�/(
√
2�a) (22)

lower wall 

bulk node 

boundary node 
xδ

2xδ

n

κωφ −=∂n

2f3f4f

8f7f6f

( )ji, ( )ji ,1+( )ji ,1−

( )1, +ji

Figure 1. Illustration of the bounce-back scheme in LBM on the lower wall and the wetting boundary
condition for the order parameter.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:203–225
DOI: 10.1002/fld



210 J. J. HUANG, C. SHU AND Y. T. CHEW

In the implementation of the wetting boundary conditions (specifically, to enforce the natural
boundary condition) the method given in [16] has been followed. From Equation (20), to apply
the wetting condition is essentially to enforce a given normal gradient of the order parameter on
the wall (�n�)S =−�/�. For the boundary nodes shown in Figure 1, the following formulas are
used to evaluate the derivatives:

�x�|i, j ≈(�i+1, j −�i−1, j )/(2�x ) (23)

�y�|i, j =−�/� (24)

�xx�|i, j ≈(�i+1, j −2�i, j +�i−1, j )/�
2
x (25)

�yy�|i, j ≈(6��x/�+�i, j+2+4�i, j+1−5�i, j )/(4�
2
x ) (26)

where in evaluating �yy�|i, j the following biased difference schemes

�yy�|i, j ≈(−3�y�|i, j +4�y�|i, j+1−�y�|i, j+2)/(2�x ) (27)

�y�|i, j+2≈(3�i, j+2−4�i, j+1+�i, j )/(2�x ) (28)

and the central difference scheme

�y�|i, j+1≈(�i, j+2−�i, j )/(2�x ) (29)

have been used. On the upper wall and even in three dimensions, similar formulas can be derived
but for brevity they are not presented here. Using these formulas, ∇� and ∇2� required in the
lattice Boltzmann equations are easily obtained on the boundary.

4. RESULTS AND DISCUSSION

In this section, LBM simulations of semicircular (in 2D) or hemispherical (in 3D) droplets on a
flat wall with given (variable) wetting properties are presented to illustrate the effects of mobility
on the evolution routes as well as the final states of such two-phase fluid systems. It is noted that
the values for mobility are given in terms of M̃ . In what follows, all the numerical results are
shown in the lattice units. Using the following relationships, the lattice quantities can be easily
converted to the physical quantities. Suppose that lphysical,uphysical, tphysical are the length, velocity
and time in the physical system, and lLBM,uLBM, tLBM are the length, velocity and time in the lattice
Boltzmann frame. Correspondingly, the reference length, velocity and time in the two systems are,
respectively, L ref

physical,U
ref
physical, t

ref
physical and L ref

LBM,U ref
LBM, t refLBM. Usually, the reference time can be

calculated by the reference length and velocity using the following relationships:

t refphysical=
L ref
physical

U ref
physical

(30)

t refLBM= L ref
LBM

U ref
LBM

(31)
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Note that the reference quantities may be different from the characteristic quantities. They must
be taken in both systems at the same location and status. The basic principle for the conversion is
that the non-dimensional quantities in the two systems must be the same, that is,

lphysical

L ref
physical

= lLBM
L ref
LBM

(32)

uphysical

U ref
physical

= uLBM
U ref
LBM

(33)

tphysical

t refphysical

= tLBM
t refLBM

(34)

For a given physical problem, one can easily decide the reference length and velocity. In the LBM
calculation, the lattice mesh spacing �x is usually taken as 1 (also used in the present work).
Suppose that the non-dimensional mesh spacing in the physical system is �x , then the reference
length in the lattice Boltzmann frame is L ref

LBM=1/�x . Hence, all the length units in LBM results
including the interface width W must multiply �x when they are converted into those in the
physical system. Owing to the incompressible limit, the reference velocity in the LBM computation
must be less than 0.3. For the problem considered (droplet), we can take the maximum vertical
velocity of the droplet as the reference velocity. From the LBM results, U ref

LBM (maximum vertical
velocity of the droplet) is about 0.004 in the present work. If the maximum vertical velocity of
the droplet in the physical system is known as U ref

physical, then the physical velocity uphysical can

be easily calculated by Equation (33). With L ref
LBM and U ref

LBM, we can simply get t refLBM by using
Equation (31). Therefore, we can compute the non-dimensional time as tLBM/t refLBM, which can be
used to calculate the time in the physical system since it is the same in any system. The conversion
of other variables can be done in the same way as their non-dimensional values are the same in
any system.

4.1. Droplet dewetting on a flat wall

In this subsection, we present some results about droplet dewetting on a flat wall with spatially
homogeneous wettability. The lower wall is originally neutral wetting (�̃=0,�=90◦) and the
droplet takes a semicircular (or hemispherical) shape when in equilibrium.

4.1.1. 2D study. At first, we consider a 2D problem. The domain size is taken as 100×50 for all
cases. The initial droplet radius is set to be 20 and the droplet center is at (xd , yd)=(50,0.5). At
the beginning, the lower wall is abruptly changed to be very lyophobic characterized by a large
static CA (�̃=−0.5865,�≈150◦, which results in an initial CA difference ��=150◦−90◦ =60◦).
Such a change is similar to the situation in the electrowetting experiments [17] when a voltage is
suddenly applied. In fact, researchers have invented some intriguing methods to modify the wall
wettability such as shedding ultraviolet light or blue light onto a photoresponsive surface [18].
Another interesting way to achieve such a setup is given in [19] which may deserve certain attention
here due to the similarity between their observations and part of the simulation results that will be
shown below. In [19] initially there were some triangular gold nanostructures on graphite; then,
laser was applied to melt these structures which turned into liquid and the molten nanodroplets
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experienced a dewetting process. When they maintained the liquid form for sufficiently long time,
such nanodroplets might jump off the surface.

Before the simulation results are shown, several quantities are firstly defined, which reflect some
characteristics of this problem. The first two are the average center y-coordinate (ȳdrop) and the
average velocity (v̄drop) of the droplet, calculated by

ȳdrop=∑
i, j

yi., j N (�i, j )

/∑
i, j

N (�i, j ) (35a)

v̄drop= ∑
i, j

vi., j N (�i, j )

/∑
i, j

N (�i, j ) (35b)

where the function N (�) is defined as

N (�)=
{
1 (�>0)

0 (��0)
(36)

Besides them, we also look at the total kinetic energy of the droplet and that of the whole field
calculated by

KEdrop=∑
i, j

(1/2)|ui, j |2N (�i, j ) (37a)

KEtotal=∑
i, j

(1/2)|ui, j |2 (37b)

To better appreciate the evolutions of the small regions around the three-phase point, the dynamic
CA �dyn is extracted from the phase field. The calculation follows the following formula [20]:

�dyn=(180/�)arccos[−(n·∇�)/|∇�|] (38)

Two notes are in order for Equation (38). Firstly, the interface spans a few grid points; thus, we
find several values for �dyn across the interfacial region, but we just take the maximum one, which
is the most accurate. Secondly, when the droplet is away from the surface after dewetting, we
simply set �dyn to be 180◦ for convenience.

In addition, half of the distance between the two three-phase points on the lower wall, denoted
as Rx , is recorded. From Rx the contact line velocity VCL is calculated by simple derivation with
respect to time. For instance, the contact line velocity at time step tn , V n

CL, is obtained as

V n
CL=(Rn

x −Rn−1
x )/�t (39)

where Rn
x (Rn−1

x ) is the value recorded at tn (tn−1).

Table I. Common parameters for simulations.

Parameters Value

Surface tension 	 0.005
Interface thickness W 3
Kinematic viscosity 
 0.005
Upper wall wettability (CA) �u 90◦
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Some other parameters for simulations are listed in Table I. Note that these parameters are
in lattice units. For a general case, the kinematic viscosity 
 and the surface tension 	 should be
calculated from the given Reynolds number Re and Capillary number Ca. However, for the present
work, the characteristic velocity (maximum vertical velocity of the droplet) is not known before
the simulation. Thus, 
 and 	 are specified, which can be used to compute Re and Ca once the
maximum vertical velocity of the droplet is obtained from the simulation. Figure 2 compares two
series of snapshots of the droplet shapes every 103 steps for M̃=5 and 15. For both cases, when
the wettability is abruptly changed, the droplet begins to contract, approaching the equilibrium
configuration. After some time the droplet shrinks to such a shape that corresponds to a CA
larger than the static equilibrium one. Then, two different outcomes occur: if the mobility is small
(M̃=5), the droplet spreads after this overshoot, and thereafter experiences some oscillations on
the wall until it obtains the shape of static equilibrium; in contrast, if the mobility is large enough
(M̃=15), the droplet jumps off the wall, oscillates as well but completely inside the ambient fluid
and finally takes a circular shape. This resembles the experimental findings in [19] to a large extent.

The dynamic CAs at the time steps shown in Figure 2 are provided in Figure 3. In all the three
cases, the dynamic CA starts from about 90◦ in accordance with the initial condition. In the early
stage, there are rather small differences between them: the dynamic CA just increases quickly to
approach the equilibrium CA; after it approaches to the equilibrium one, it decreases slowly and
then increases again. Significant differences occur between t=3×103 and 4×103, after which the
CA in the case with the largest mobility becomes 180◦, whereas for the other two it experiences
some oscillations before returning to the equilibrium state.

In Figure 4, the evolutions of the droplet center and velocity in the vertical direction are
given for M̃=5, 10 and 15. In agreement with the direct observations, when the mobility is
small (M̃=5,10)ȳdrop shows some oscillations before it finally reaches a constant value (∼13)
corresponding to the equilibrium configuration; but when M̃=15, ȳdrop almost keeps increasing
until it becomes constant (∼24) when all the kinetic energy has been dissipated. Based on the
maximum droplet velocity (v̄max

drop∼0.004), the Reynolds number and the capillary number are
estimated to be Re= v̄max

dropRd/
∼16 and Ca=(�c
)v̄
max
drop/	∼0.004, respectively. In addition, the

Cahn number is Ch=W/Rd =0.15. Here the characteristic length is chosen as the drop radius.
If it is chosen as the domain size, then the Cahn number will be 0.03. The Peclet number,
Pe= v̄max

dropR
2
d/[(1/2)M̃�t ]	, is within the range of 42.7�Pe�128 (dependent of M).

Figure 5 compares the evolution of the kinetic energy of the droplet as well as the whole flow
field under the three mobilities. From Figure 5 it is seen that for all cases, the kinetic energy
increases quickly at the initial stage, reaches a maximum and then decays quickly. This corresponds
to the transformation of the potential energy (due to the initial non-equilibrium configuration) of
the concentration field into kinetic energy of the flow field, and then vice versa. The larger the
mobility is, the higher the extreme kinetic energy can reach. This may suggest that the mobility
facilitates the release of the potential energy at the beginning, possibly due to the increase in
contact line velocity with increasing mobility. After this stage, the kinetic energy decays due to
dissipating effects. It is interesting to note that, contrary to the maximum in the initial stage, the
next-to-maximum of the kinetic energy decreases when the mobility increases. This is probably
due to the fact that the dissipation by molecular diffusion increases with larger mobility and it
becomes more significant in the later stages. Finally, it is observed that the droplet experiences
more oscillations if it is completely immersed in the ambient fluid than when it still stays attached
on the wall. This is reasonable because the wall tends to have larger retardation on it.
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Figure 2. Snapshots of droplet shapes every 1000 steps after the wall wettability is suddenly switched
from neutral wetting to very lyophobic (left: M̃=5; right: M̃=15).
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Figure 3. Evolution of the dynamic CA at time intervals shown in Figure 2.
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Figure 4. Evolution of the average center y-coordinate (ȳdrop) and the average velocity (v̄drop)
of the droplet under different mobilities.

Figure 6 shows the evolutions of Rx on the wall from t=0 to 2×104 for the three cases. This
figure may illustrate different evolutions of the droplet in a clearer way. It is found that Rx first
has some oscillations for M̃=5 and 10 and finally approaches a finite value (∼8) corresponding
to the configuration with static CA; when M̃=15, Rx keeps decreasing and becomes zero at about
t=3.6×103, which indicates that the droplet completely ‘jumps up’.

As mentioned earlier, the contact line velocity, VCL, can be obtained by differentiating Rx with
respect to time. Its evolution is plotted in Figure 7. Similar to the dynamic CA, the evolutions of
VCL in the early stage for different cases are rather close. But there are some differences at the
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Figure 5. Evolution of the kinetic energy of the droplet (KEdrop) and the whole flow
field (KEtotal) under different mobilities.
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Figure 6. Evolution of Rx on the wall for different mobilities.

beginning: the magnitudes of VCL at t=10 for M̃=5, 10 and 15 are 0.01103, 0.01771 and 0.02264,
respectively. For the case of M̃=15, |VCL| displays a surge before the droplet gets away from the
wall (at about t=3.6×103). The reason may be related to the singularity that occurs at this specific
stage. After that, |VCL| is not well defined; thus, in Figure 7 only the period during which the
droplet was attached to the wall is shown. For the other two cases (M̃=5 and 10), some oscillations
and then a tendency to reach equilibrium are found, as expected from the evolution of Rx .

To obtain the critical value for mobility, many simulations have been carried out. Figure 8 shows
the evolutions of Rx from t=3×103 to 6×103 for a series of mobility across the critical value.
From this figure, it is seen that the critical M̃ lies in between 10 and 10.1 (by a rough estimation,
one may take M̃cr≈10.05).
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Figure 7. Evolution of the contact line velocity for different mobilities.
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Figure 8. Bifurcation diagram of the evolution of Rx under different mobilities.

In addition, from this set of numerical experiments, the initial contact line velocity (at t=10)
as a function of the mobility has been extracted (see Figure 9). It is observed that the relation
may be roughly described by a linear function (VCL∝ M̃). However, it should be noted that this
relation may hold only within a certain range of M̃ and at the early stage of dewetting plus under
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Figure 9. Variation of the initial contact line velocity with the mobility.

the capillary number regime investigated. At late stages, it may not hold because of the change in
the droplet shape and other non-linear factors.

Finally, it would be interesting to compare the above results with the work of [21], in which the
dewetting process of a thin liquid film was studied both experimentally and by using a lubrication
model with a slip condition. The radius of the hole and the rim profile were mainly investigated. It
was found that two different lubrication models can result from slip lengths different by order of
magnitude. That is quite similar to the present findings though here the dewetting of semicircular
droplets is investigated.

4.1.2. Effects of initial CA difference and surface tension on critical mobility. In the droplet
dewetting process, the initial CA difference �� and the surface tension 	 are certainly two important
factors. The variation of the critical mobility M̃cr with �� (at a fixed 	), as well as its variation
with 	 (with �� fixed), is worth studying. A series of simulations varying � while fixing 	 (and
vice versa) were carried out to find M̃cr to the accuracy of 0.1 and the average value was chosen
as the critical one (similar to the above case in which M̃cr≈10.05).

Figure 10 shows the variation of M̃cr with �� (while the surface tension is fixed as 	=0.005).
The results are from 11 series of tests with the lower wall CA varying from 150◦ to 160◦ (at 1◦
interval). Note that the M̃cr axis is plotted using the log scale. It is seen that as the CA difference
increases, M̃cr decreases, which means that the droplet jumps off the surface easier. This can be
understood from the direct physical analysis. Large �� is equivalent to large initial potential energy
or driving force; thus, bifurcation may still happen even when the slip on the wall (related to the
mobility) is weak under such conditions. Another trend is that when �� decreases, M̃cr seems to
increase faster and faster (i.e. the rate of increase becomes larger as well). In Figure 10 M̃cr is in
the log scale and the data distribution seems to be close to one straight line (the dashed line drawn
for reference) for relatively small �� (roughly ��<65◦), and it is close to another straight line
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Figure 10. Variation of the critical mobility with the initial CA difference (note that
the dashed and the dashed-dotted lines are drawn for reference).

(e.g. the dashed-dotted line) for relatively large �� (roughly ��>65◦). For ��<65◦ one may deduce
that M̃cr may increase exponentially as �� decreases. In the simulations with ��=55◦ (�=145◦)
the bifurcation could no longer be observed. No matter how the mobility was varied, the droplet
always stayed on the lower wall after the dewetting process. This indicates that at this CA, M̃cr
(if any) already exceeds the one that would guarantee numerical stability. At the other end, for
��>65◦, M̃cr seems to decrease at a slower rate as �� increases.

The effect of the surface tension 	 on M̃cr can be found in Figure 11. Five series of simulations
with 	 from 0.003 to 0.005 (at an interval of 0.0005) were performed at ��=65◦ (i.e. � fixed to
be 155◦). Both M̃cr and 	 axes are plotted in log scale. It is found that the points are almost on a
straight line (the dashed line). This suggests that the two may be related by M̃cr=C2	−C1 , where
C1 and C2 are positive constants. It is obvious that M̃cr decreases when 	 increases. From the
trend, it is possible that M̃cr could go beyond the value that allows numerical stability as 	 further
decreases (to be far below 0.003); for very large 	 (to be much larger than 0.005), the droplet
might jump away from the wall for any (numerically allowed) value of M̃ (just like the situation
for the M̃cr–�� relation). However, the investigations of the two extremes are not within the scope
of the present work. In addition, the M̃cr–	 relation deduced from Figure 11 may not hold when
�� varies. What it will be like as �� changes is left for future study.

4.1.3. Some 3D investigations. In addition to the 2D study, a few 3D dewetting simulations,
which are supposedly to be closer to the real situations, have also been performed. The domain
size is 90×90×50, the initial droplet radius is set to be Rd =15 and the droplet center is at
(xd , yd , zd)=(45,45,0.5). The viscosity 
, the interface width W and other parameters remain the
same as in the 2D study except that the surface tension is now smaller (	=0.002). Similar to the
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Figure 11. Variation of the critical mobility with the surface tension (note that the
dashed line is drawn for reference).

2D case, periodic boundary condition is implemented at all boundaries. Two values for the lower
wall CA (145◦ and 150◦) were tested. In both cases, bifurcations depending on the mobility were
observed. For a brief capture, the final states for the case of �=145◦ with the mobility being 4.5
and 5 are shown in Figure 12. In Figure 12(a), the droplet stays on the wall, whereas it jumps off
the surface in Figure 12(b). The bifurcation diagrams in terms of the evolution of Rx (similar to
the 2D definition, but now taken in the central x–z plane) are given in Figure 13. For the 3D case,
we tried to find only the critical mobility M̃cr to the accuracy of 0.5. Using an estimation based on
the average of the two mobilities across the critical one, M̃cr would be 4.75 and 2.25 for �=145◦
and 150◦, respectively. For the four cases (�=145◦ : M̃=4.5,5;�=150◦:M̃=2,2.5), the recorded
maximum droplet velocities in the z-direction (w̄max

drop) are in the range from 0.0032 to 0.0034 (the
mid-value 0.0033 is taken for convenience). Based on w̄max

drop∼0.0033, the Reynolds number and
the capillary number are roughly given by Re= w̄max

dropRd/
∼9.9 and Ca=(�c
)w̄
max
drop/	∼0.00825,

respectively. In addition, the Cahn number is Ch=W/Rd =0.2, and the Peclet numbers, Pe=
w̄max
dropR

2
d/[(1/2)M̃�t ]	, are 371.25, 297, 165 and 148.5, respectively, for M̃=2,2.5,4.5 and 5. By

comparing Figure 13 with Figure 8, one can see clearly that the 3D results do confirm the finding
in the 2D study. That is, there is a critical mobility for bifurcation with a given CA.

4.2. Droplets on a flat wall with chemical heterogeneity

Next we present some results about the mobility effect on 3D droplets on a flat wall with chemical
heterogeneity. The computations were done in a domain of 0�x�50,0�y�50,0�z�25 confined
between two parallel walls at z=0 and 25. On the other four sides, periodic boundary conditions
were used. Hence in equivalence, we simulated a series of droplets and the neighboring droplets
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Figure 12. Snapshots of the droplet at the end of simulation (time: 10 000) for �=145◦:
(a) mobility M̃=4.5 and (b) mobility M̃=5.

nstep

R
x

2000 4000 6000 8000

10

CA=145; ~M=2.0
CA=145; ~M=4.0
CA=145; ~M=4.5
CA=145; ~M=5.0
CA=145; ~M=5.5
CA=145; ~M=6.0
CA=145; ~M=10.0

nstep

R
x

2000 4000 6000 8000

10

CA=150; ~M=2.0
CA=150; ~M=2.5
CA=150; ~M=3.0
CA=150; ~M=4.0
CA=150; ~M=6.0
CA=150; ~M=10.0

(a) (b)

Figure 13. Bifurcation diagram of the evolution of Rx under different mobilities for a 3D droplet:
(a) lower wall CA 145◦ and (b) lower wall CA 150◦.

may coalescence with each other under certain conditions. Similar to the previous cases, the initial
conditions are given for the walls being neutral wetting and the droplets take hemispherical shape
in equilibrium. The droplet radius is Rd =16.5 and the droplet center is at (xd , yd , zd)=(25,25,0).
The wall at z=25 is always kept neutral wetting. At the initial stage on the wall at z=0, a narrow
lyophobic (�̃=−0.432,�≈130◦) stripe of width 6 is suddenly created near the center line of
x=25 (with slight asymmetry: 0.5 toward left) and all other parts are suddenly made lyophilic
(�̃=0.335,�≈60◦) by some means (see Figure 14; note that to better illustrate the situation the
right half 50�x�100,0�y�50, identical to the left, has been added). Some other parameters
for simulations are listed in Table II. For this problem, we define an average droplet velocity
magnitude by

|u|d =
√√√√2

∑
i, j,k

(1/2)|ui, j,k |2N (�i, j,k)

/ ∑
i, j,k

N (�i, j,k) (40)

where the function N (�) is defined in Equation (36).
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Figure 14. Wettability distribution on the wall at z=0 (slim stripe: lyophobic; other parts: lyophilic).

Table II. Common parameters for simulations.

Parameters Value

Surface tension 	 0.001
Interface thickness W 3
Kinematic viscosity 
 0.005

The evolution of this system is monitored every 103 steps. Figure 15 compares the snap-
shots of the system evolutions for M̃=2 and 20. Note that the data for the right half
(50�x�100,0�y�50,0�z�25) are duplicated from that for the left half in order to illustrate
the evolution more clearly. It is easily seen that the fundamental differences result from the
change in mobility. Because the two cases evolved with a different characteristic time, the
snapshots were taken every 104 steps for M̃=2, whereas the interval was 4×103 for M̃=20.
The evolutions of the average droplet |u|d (as defined by Equation (40)) are shown in Figure 16.
The observed maximum values of the droplet velocity, |u|max

drop, were 0.0017 and 0.0018 for M̃=2
and 20, respectively. We may take their average, 0.00175, to roughly estimate the dimension-
less numbers as Re=|u|max

dropRd/
=5.775,Ca=(�c
)|u|max
drop/	=0.00875,Ch=W/Rd =0.18 and

Pe=|u|max
dropR

2
d/[(1/2)M̃�t ]	=476.4 for M̃=2 and 47.64 for M̃=20.

For both cases, the droplets are driven by the chemical heterogeneities toward the equilibrium
configurations that minimize the total energy of the system. Probably due to the slight asymmetry
in the position of the lyophobic stripe the droplets tend to move toward right; thus for each droplet
the right tip is an advancing point and the left, receding. When the mobility is small, the droplet
moves much slower (smaller contact line velocity). Note that both the advancing and receding
speeds are small. But the advancing point of the left droplet moves slower enough (relative to the
receding velocity of the right droplet) and it is not able to catch up and coalesce with the right
one; the droplets just experience some contractions when moving across the lyophobic islands and
finally stay on the lyophilic lands. If the mobility becomes much larger, the contact line velocities
of both the advancing and receding points increase. It seems that the increment in the advancing
speed of the left droplet is more significant than that of the receding one of the right droplet.
As a result, the left catches up with the right and merges with it. Eventually the all-connected
large drop was again broken into small droplets staying on the lyophilic parts separated by the
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Figure 15. Snapshots of droplet shapes for M̃=2 (every 104 steps; left column) and for M̃=20 (every
4×103 steps; right column) on chemically heterogeneous walls.

lyophobic islands. It is noted that the two different processes are reflected in Figure 16 as well.
When the droplet was simply driven to the lyophilic part without being split (M̃=2)|u|d had
only two peaks; but when the droplet experiences the merging-and-splitting process (M̃=20)|u|d
showed three peaks and decayed to zero much faster. Obviously, for this problem there should
also be some critical value of mobility that differentiates the two routes. However, it requires
considerable simulation efforts to get this value for the 3D case and we leave it for future work.
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Figure 16. Evolution of the average droplet velocity |u|d for M̃=2 and 20.

5. CONCLUSIONS

In this paper, we have studied the effects of mobility on chemically driven droplets by the lattice
Boltzmann model. Through extensive numerical investigations of the droplet dewetting process
(both 2D and 3D) and a preliminary study of droplets on heterogeneous surfaces, we have found
that the mobility determines the slip velocity of the contact line and may critically decide the
evolutions and final equilibrium states of such two-phase fluid systems. These investigations are
expected to give some useful hints to future study in microfluidics involving droplet manipulations.
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